Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Fluids Barriers CNS ; 20(1): 30, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2324038

ABSTRACT

This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.


Subject(s)
Blood-Brain Barrier , Brain , Choroid Plexus , Cerebrospinal Fluid
2.
Mol Psychiatry ; 27(9): 3573-3582, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2185732

ABSTRACT

The choroid plexus (CP) is a delicate and highly vascularized structure in the brain comprised of a dense network of fenestrated capillary loops that help in the synthesis, secretion and circulation of cerebrospinal fluid (CSF). This unique neuroanatomical structure is comprised of arachnoid villi stemming from frond-like surface projections-that protrude into the lumen of the four cerebral ventricles-providing a key source of nutrients to the brain parenchyma in addition to serving as a 'sink' for central nervous system metabolic waste. In fact, the functions of the CP are often described as being analogous to those of the liver and kidney. Beyond forming a barrier/interface between the blood and CSF compartments, the CP has been identified as a modulator of leukocyte trafficking, inflammation, cognition, circadian rhythm and the gut brain-axis. In recent years, advances in molecular biology techniques and neuroimaging along with the use of sophisticated animal models have played an integral role in shaping our understanding of how the CP-CSF system changes in relation to the maturation of neural circuits during critical periods of brain development. In this article we provide an ontogenetic perspective of the CP and review the experimental evidence implicating this structure in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.


Subject(s)
Choroid Plexus , Neuroanatomy , Animals , Choroid Plexus/blood supply , Choroid Plexus/metabolism , Brain/metabolism , Central Nervous System , Circadian Rhythm , Cerebrospinal Fluid/metabolism , Blood-Brain Barrier/metabolism
4.
Ann Clin Transl Neurol ; 9(2): 221-226, 2022 02.
Article in English | MEDLINE | ID: covidwho-1624961

ABSTRACT

Cognitive post-acute sequelae of SARS-CoV-2 (PASC) can occur after mild COVID-19. Detailed clinical characterizations may inform pathogenesis. We evaluated 22 adults reporting cognitive PASC and 10 not reporting cognitive symptoms after mild SARS-CoV-2 infection through structured interviews, neuropsychological testing, and optional cerebrospinal fluid (CSF) evaluations (53%). Delayed onset of cognitive PASC occurred in 43% and associated with younger age. Cognitive PASC participants had a higher number of pre-existing cognitive risk factors (2.5 vs. 0; p = 0.03) and higher proportion with abnormal CSF findings (77% vs. 0%; p = 0.01) versus controls. Cognitive risk factors and immunologic mechanisms may contribute to cognitive PASC pathogenesis.


Subject(s)
COVID-19/physiopathology , Cerebrospinal Fluid/virology , Cognition/physiology , SARS-CoV-2/pathogenicity , Adult , Aged , COVID-19/cerebrospinal fluid , Disease Progression , Female , Humans , Male , Middle Aged , Research Personnel , Risk Factors , Young Adult
5.
Front Immunol ; 12: 782731, 2021.
Article in English | MEDLINE | ID: covidwho-1581325

ABSTRACT

The SARS-CoV-2 and its variants are still hitting the world. Ever since the outbreak, neurological involvements as headache, ageusia, and anosmia in COVID-19 patients have been emphasized and reported. But the pathogenesis of these new-onset neurological manifestations in COVID-19 patients is still obscure and controversial. As difficulty always lay in the diagnosis of neurological infection, current reports to validate the presence of SARS-CoV-2 in cerebrospinal fluid (CSF) almost relied on the basic methods and warranted improvement. Here we reported a case series of 8 patients with prominent new-onset neurological manifestations, who were screened out from a patch of 304 COVID-19 confirmed patients. Next-generation sequencing (NGS) and proteomics were conducted in the simultaneously obtained CSF and serum samples of the selected patients, with three non-COVID-19 patients with matched demographic features used as the controls for proteomic analysis. SARS-CoV-2 RNA was detected in the CSF of four COVID-19 patients and was suspicious in the rest four remaining patients by NGS, but was negative in all serum samples. Proteomic analysis revealed that 185 and 59 proteins were differentially expressed in CSF and serum samples, respectively, and that only 20 proteins were shared, indicating that the proteomic changes in CSF were highly specific. Further proteomic annotation highlighted the involvement of complement system, PI3K-Akt signaling pathway, enhanced cellular interaction, and macrophages in the CSF proteomic alterations. This study, equipped with NGS and proteomics, reported a high detection rate of SARS-CoV-2 in the CSF of COVID-19 patients and the proteomic alteration of CSF, which would provide insights into understanding the pathological mechanism of SARS-CoV-2 CNS infection.


Subject(s)
COVID-19/cerebrospinal fluid , Central Nervous System Diseases/virology , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/virology , RNA, Viral/cerebrospinal fluid , Adult , Aged , Aged, 80 and over , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Proteomics , SARS-CoV-2 , Sequence Analysis, RNA
6.
J Med Virol ; 93(10): 6045-6049, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432431

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been shown to be associated with a lot of neurological complications, of whom Guillain-Barre syndrome (GBS) is an important post-infectious consequentiality. More than 220 patients with GBS have been reported thus far. We intend to share our experience with five patients of GBS where one of them had severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the cerebrospinal fluid (CSF). This is the first-ever report demonstrating the presence of SARS-CoV-2 in the CSF of an adult patient; a similar occurrence has recently been described in a pediatric patient. We wish to emphasize the fact that commonly GBS occurs as a result of a post-infectious process but in a few cases where the symptoms of COVID-19 and GBS occur concurrently, corresponding to the viremic phase, separate pathogenesis needs to be thought of. This para-infectious nature is exemplified by the presence of virus in the cerebrospinal fluid of one of our patients. We review the neuroinvasive potential of SARS-Cov-2 in this regard and draw parallels with Cytomegalovirus, Zika virus, and Human Immunodeficiency virus-associated occurrences of GBS.


Subject(s)
COVID-19/complications , Guillain-Barre Syndrome/etiology , Adult , COVID-19/cerebrospinal fluid , COVID-19/therapy , Cerebrospinal Fluid/virology , Female , Guillain-Barre Syndrome/cerebrospinal fluid , Humans , Immunoglobulins, Intravenous/administration & dosage , Male , Middle Aged , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Treatment Outcome
7.
J Med Virol ; 93(7): 4247-4257, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1269115

ABSTRACT

To provide instructive clues for clinical practice and further research of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we analyzed the existing literature on viral neuroinvasion of SARS-CoV-2 in coronavirus disease 2019 (COVID-19) patients. To date, SARS-CoV-2 has been detected in the cerebrospinal fluid (CSF) or brain parenchyma in quite a few patients, which provide undeniable evidence for the neuroinvasive potential of this novel coronavirus. In contrast with the cerebrum and cerebellum, the detection rate of SARS-CoV-2 was higher in the olfactory system and the brainstem, both of which also showed severe microgliosis and lymphocytic infiltrations. As compared with the number of patients who underwent viral testing in the central nervous system (CNS), the number of patients showing positive results seems very small. However, it seems too early to conclude that the neuroinvasion of SARS-CoV-2 is rare in COVID-19 patients because the detection methods or sampling procedures in some studies may not be suitable or sufficient to reveal the CNS infection induced by neurotropic viruses. Moreover, the primary symptoms and/or causes of death were distinctly different among examined patients, which probably caused more conspicuous pathological changes than those due to the direct infection that usually localized to specific brain areas. Unfortunately, most autopsy studies did not provide sufficient details about neurological symptoms or suspected diagnoses of the examined patients, and the documentation of neuropathological changes was often incomplete. Given the complex pathophysiology of COVID-19 and the characteristics of neurotropic viruses, it is understandable that any study of the CNS infection may inevitably have limitations.


Subject(s)
Brain/pathology , COVID-19/pathology , Cerebrospinal Fluid/virology , Olfactory Bulb/virology , Antibodies, Viral/blood , Antibodies, Viral/cerebrospinal fluid , Brain/virology , Humans , Nervous System Diseases/virology , Olfactory Mucosa/virology , SARS-CoV-2/isolation & purification
8.
J Med Virol ; 93(3): 1304-1313, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196501

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a significant and urgent threat to global health. This review provided strong support for central nervous system (CNS) infection with SARS-CoV-2 and shed light on the neurological mechanism underlying the lethality of SARS-CoV-2 infection. Among the published data, only 1.28% COVID-19 patients who underwent cerebrospinal fluid (CSF) tests were positive for SARS-CoV-2 in CSF. However, this does not mean the absence of CNS infection in most COVID-19 patients because postmortem studies revealed that some patients with CNS infection showed negative results in CSF tests for SARS-CoV-2. Among 20 neuropathological studies reported so far, SARS-CoV-2 was detected in the brain of 58 cases in nine studies, and three studies have provided sufficient details on the CNS infection in COVID-19 patients. Almost all in vitro and in vivo experiments support the neuroinvasive potential of SARS-CoV-2. In infected animals, SARS-CoV-2 was found within neurons in different brain areas with a wide spectrum of neuropathology, consistent with the reported clinical symptoms in COVID-19 patients. Several lines of evidence indicate that SARS-CoV-2 used the hematopoietic route to enter the CNS. But more evidence supports the trans-neuronal hypothesis. SARS-CoV-2 has been found to invade the brain via the olfactory, gustatory, and trigeminal pathways, especially at the early stage of infection. Severe COVID-19 patients with neurological deficits are at a higher risk of mortality, and only the infected animals showing neurological symptoms became dead, suggesting that neurological involvement may be one cause of death.


Subject(s)
Brain/virology , COVID-19/virology , Central Nervous System Viral Diseases/virology , Neurons/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/mortality , COVID-19/physiopathology , Central Nervous System Viral Diseases/mortality , Central Nervous System Viral Diseases/physiopathology , Cerebrospinal Fluid/virology , Humans , Neural Pathways , SARS-CoV-2/isolation & purification
9.
J Neurovirol ; 27(2): 348-353, 2021 04.
Article in English | MEDLINE | ID: covidwho-1111382

ABSTRACT

This study was designed to evaluate whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can directly target the central nervous system (CNS). We present four patients suffering from the loss of consciousness and seizure during the clinical course of COVID-19 infection. In addition to positive nasopharyngeal swab tests, SARS-CoV-2 has been detected in their cerebrospinal fluid. This report indicates the neuroinvasive potential of SARS-CoV-2, suggesting the ability of this virus to spread from the respiratory tract to the CNS.


Subject(s)
COVID-19/complications , Cerebrospinal Fluid/virology , SARS-CoV-2/isolation & purification , Seizures/virology , Severe Acute Respiratory Syndrome/virology , Aged , Female , Humans , Male , Middle Aged , Young Adult
10.
Aging (Albany NY) ; 13(3): 4713-4730, 2021 02 14.
Article in English | MEDLINE | ID: covidwho-1084188

ABSTRACT

The peculiar features of coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), are challenging the current biological knowledge. Early in Feb, 2020, we suggested that SARS-CoV-2 may possess neuroinvasive potential similar to that of many other coronaviruses. Since then, a variety of neurological manifestations have been associated with SARS-CoV-2 infection, which was supported in some patients with neuroimaging and/or cerebrospinal fluid tests. To date, at least 27 autopsy studies on the brains of COVID-19 patients can be retrieved through PubMed/MEDLINE, among which neuropathological alterations were observed in the brainstem in 78 of 134 examined patients, and SARS-CoV-2 nucleic acid and viral proteins were detected in the brainstem in 16/49 (32.7%) and 18/71 (25.3%) cases, respectively. To shed some light on the peculiar respiratory manifestations of COVID-19 patients, this review assessed the existing evidence about the neurogenic mechanism underlying the respiratory failure induced by SARS-CoV-2 infection. Acknowledging the neurological involvement has important guiding significance for the prevention, treatment, and prognosis of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Nervous System Diseases , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/physiopathology , Cerebrospinal Fluid/virology , Humans , Nervous System Diseases/diagnosis , Nervous System Diseases/etiology , Nervous System Diseases/virology , Neuroimaging/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
11.
Hosp Pract (1995) ; 49(3): 157-163, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1069189

ABSTRACT

There is increasing evidence of the ability of the novel coronavirus to invade the central nervous system (CNS). But how does a respiratory virus invade the highly protected CNS? Here, we reviewed available literature and case reports to determine CNS involvement in COVID-19, and to identify potential regions of the brain that may be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its possible route of entry into the brain to identify its pathogenicity. Based on the symptoms, the parietal lobe and the cerebellum are the likely targets of SARS-CoV-2; however, further work is needed to elucidate this. The presence of ACE2, used by SARS-CoV-2 for cell entry, in the brain as well as detection of the virus in the cerebrospinal fluid, further assert that SARS-COV-2 targets the brain, and therefore, medical practitioners should take that into account when dealing with patients suffering from COVID-19.


Subject(s)
Blood-Brain Barrier/virology , COVID-19/virology , Central Nervous System/virology , SARS-CoV-2/pathogenicity , Blood-Brain Barrier/pathology , Brain/virology , COVID-19/pathology , Central Nervous System/pathology , Cerebrospinal Fluid/virology , Humans
12.
Arch Argent Pediatr ; 119(1): e58-e60, 2021 02.
Article in Spanish | MEDLINE | ID: covidwho-1067890

ABSTRACT

The SARS-CoV-2 virus, responsible for the COVID-19 pandemic, is an emerging infectious agent. The knowledge of both its infectivity mechanisms and the possible complications and specific treatments is the subject of constant research. To understand the involvement of the central nervous system in children, the behavior of this germ is studied based on the neuroinvasive properties of certain respiratory viruses, the neurological damage caused by other coronaviruses, and the clinical manifestations in adults with COVID-19. We describe the clinical case of a 2-month-old patient who consulted for fever without a focus with detection of SARSCoV- 2 by reverse transcription polymerase chain reaction in nasopharyngeal secretions and cerebrospinal fluid. The infant presented good evolution, with resolution of the fever and without compromise or neurological manifestations.


El virus SARS-CoV-2, responsable de la pandemia de COVID-19, es un agente infeccioso emergente. El conocimiento tanto de sus mecanismos de infectividad como de las posibles complicaciones y tratamientos específicos es motivo de constante investigación. Para comprender la afectación del sistema nervioso central en los niños, se estudia el comportamiento de este germen basándose en las propiedades neuroinvasivas de ciertos virus respiratorios, el daño neurológico causado por otros coronavirus y las manifestaciones clínicas en adultos con COVID-19. Se describe el caso clínico de un paciente de 2 meses de edad que consultó por un cuadro febril sin foco con detección de SARS-CoV-2 por reacción en cadena de la polimerasa con transcriptasa inversa en secreciones nasofaríngeas y el líquido cefalorraquídeo. Presentó buena evolución, con resolución de la fiebre y sin compromiso ni manifestaciones neurológicas.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Cerebrospinal Fluid/virology , SARS-CoV-2/isolation & purification , COVID-19/cerebrospinal fluid , COVID-19/virology , Humans , Infant , Male
13.
Immunity ; 54(1): 164-175.e6, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1065205

ABSTRACT

Patients suffering from Coronavirus disease 2019 (COVID-19) can develop neurological sequelae, such as headache and neuroinflammatory or cerebrovascular disease. These conditions-termed here as Neuro-COVID-are more frequent in patients with severe COVID-19. To understand the etiology of these neurological sequelae, we utilized single-cell sequencing and examined the immune cell profiles from the cerebrospinal fluid (CSF) of Neuro-COVID patients compared with patients with non-inflammatory and autoimmune neurological diseases or with viral encephalitis. The CSF of Neuro-COVID patients exhibited an expansion of dedifferentiated monocytes and of exhausted CD4+ T cells. Neuro-COVID CSF leukocytes featured an enriched interferon signature; however, this was less pronounced than in viral encephalitis. Repertoire analysis revealed broad clonal T cell expansion and curtailed interferon response in severe compared with mild Neuro-COVID patients. Collectively, our findings document the CSF immune compartment in Neuro-COVID patients and suggest compromised antiviral responses in this setting.


Subject(s)
COVID-19/immunology , Monocytes/immunology , Nervous System Diseases/immunology , T-Lymphocytes/immunology , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/pathology , Cell Differentiation , Cerebrospinal Fluid/immunology , Encephalitis, Viral/cerebrospinal fluid , Encephalitis, Viral/immunology , Gene Expression Profiling , Humans , Interferons/genetics , Interferons/immunology , Leukocytes/immunology , Lymphocyte Activation , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis
14.
Stroke ; 51(12): 3719-3722, 2020 12.
Article in English | MEDLINE | ID: covidwho-1050419

ABSTRACT

BACKGROUND AND PURPOSE: Case series indicating cerebrovascular disorders in coronavirus disease 2019 (COVID-19) have been published. Comprehensive workups, including clinical characteristics, laboratory, electroencephalography, neuroimaging, and cerebrospinal fluid findings, are needed to understand the mechanisms. METHODS: We evaluated 32 consecutive critically ill patients with COVID-19 treated at a tertiary care center from March 9 to April 3, 2020, for concomitant severe central nervous system involvement. Patients identified underwent computed tomography, magnetic resonance imaging, electroencephalography, cerebrospinal fluid analysis, and autopsy in case of death. RESULTS: Of 32 critically ill patients with COVID-19, 8 (25%) had severe central nervous system involvement. Two presented with lacunar ischemic stroke in the early phase and 6 with prolonged impaired consciousness after termination of analgosedation. In all but one with delayed wake-up, neuroimaging or autopsy showed multiple cerebral microbleeds, in 3 with additional subarachnoid hemorrhage and in 2 with additional small ischemic lesions. In 3 patients, intracranial vessel wall sequence magnetic resonance imaging was performed for the first time to our knowledge. All showed contrast enhancement of vessel walls in large cerebral arteries, suggesting vascular wall pathologies with an inflammatory component. Reverse transcription-polymerase chain reactions for SARS-CoV-2 in cerebrospinal fluid were all negative. No intrathecal SARS-CoV-2-specific IgG synthesis was detectable. CONCLUSIONS: Different mechanisms of cerebrovascular disorders might be involved in COVID-19. Acute ischemic stroke might occur early. In a later phase, microinfarctions and vessel wall contrast enhancement occur, indicating small and large cerebral vessels involvement. Central nervous system disorders associated with COVID-19 may lead to long-term disabilities. Mechanisms should be urgently investigated to develop neuroprotective strategies.


Subject(s)
COVID-19/diagnostic imaging , Cerebral Arteries/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Cerebrovascular Disorders/diagnostic imaging , Ischemic Stroke/diagnostic imaging , Aged , Antibodies, Viral/cerebrospinal fluid , Brain Ischemia/diagnostic imaging , Brain Ischemia/etiology , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/physiopathology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Cerebral Hemorrhage/etiology , Cerebrospinal Fluid/immunology , Cerebrospinal Fluid/virology , Cerebrovascular Disorders/cerebrospinal fluid , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/physiopathology , Consciousness Disorders/etiology , Consciousness Disorders/physiopathology , Contrast Media , Critical Illness , Electroencephalography , Female , Humans , Ischemic Stroke/etiology , Magnetic Resonance Imaging , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Switzerland , Tertiary Care Centers , Tomography, X-Ray Computed
17.
Biomedica ; 40(Supl. 2): 173-179, 2020 10 30.
Article in English, Spanish | MEDLINE | ID: covidwho-914758

ABSTRACT

Coronaviruses cause respiratory and gastrointestinal disorders in animals and humans. The current SARS-CoV-2, the COVID-19 infectious agent, belongs to a subgroup called betacoronavirus including the SARS-CoV and MERS-CoV responsible for epidemics in 2002 and 2012, respectively. These viruses can also infect the nervous system due to their affinity for the human angiotensin-converting enzyme 2 (ACE2) expressed in neurons and glial cells. Infections with SARS-CoV, MERS-CoV, and now SARS-CoV-2 also produce neurological signs such as acute cerebrovascular disease, impaired consciousness, and muscle injury, as well as dizziness, hypogeusia, hyposmia, hypoxia, neuralgia, and hypoxic encephalopathy. For this reason, close attention should be paid to the neurological manifestations of COVID-19 patients.


Los coronavirus son una familia de virus que se caracterizan por producir afectaciones respiratorias y gastrointestinales en animales y en seres humanos. El actual SARS-CoV-2, agente infeccioso de la COVID-19, pertenece a un subgrupo denominado betacoronavirus del que hacen parte el SARS-CoV y MERS-CoV, virus responsables de epidemias en el 2002 y el 2012, respectivamente. Estos virus también pueden infectar el sistema nervioso debido a su afinidad con la enzima convertidora de angiotensina humana 2 (ACE2), la cual se expresa en neuronas y células gliales. Se ha demostrado que las infecciones con SARS-CoV y MERS-CoV, y ahora también con el SARS-CoV-2, ocasionan condiciones neurológicas como la enfermedad cerebrovascular aguda, la conciencia alterada y las lesiones musculares, así como mareos, hipogeusia, hiposmia, hipoxia, neuralgia y encefalopatía hipóxica. Por ello debe prestarse mucha atención a las manifestaciones neurológicas de los pacientes de COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/complications , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nervous System Diseases/etiology , Pneumonia, Viral/complications , Severe Acute Respiratory Syndrome/complications , Severe acute respiratory syndrome-related coronavirus/pathogenicity , COVID-19 , Cerebrospinal Fluid/virology , Cerebrovascular Disorders/etiology , Consciousness Disorders/etiology , Coronavirus Infections/epidemiology , Disease Outbreaks , Forecasting , Humans , Musculoskeletal Diseases/etiology , Pandemics , Pneumonia, Viral/epidemiology , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Sensation Disorders/etiology , Severe Acute Respiratory Syndrome/epidemiology , Virus Latency
18.
Cleve Clin J Med ; 87(12): 729-734, 2020 11 23.
Article in English | MEDLINE | ID: covidwho-732763

ABSTRACT

Patients with COVID-19 have a fairly high risk of neurologic complications, including encephalopathy, stroke, central nervous system infection, seizures, and neuromuscular diseases. Many report losing their senses of smell and taste, and many survivors report lingering neurocognitive impairment. The diagnosis and treatment of these complications does not differ from that in other patients, although sophisticated testing may not be readily available for a patient in intensive care and respiratory isolation. Clinicians should therefore be alert to these complications.


Subject(s)
COVID-19 , Central Nervous System Diseases , Neuromuscular Diseases , SARS-CoV-2 , Seizures , Stroke , COVID-19/complications , COVID-19/physiopathology , COVID-19/psychology , Central Nervous System Diseases/etiology , Central Nervous System Diseases/therapy , Cerebrospinal Fluid/virology , Diagnosis, Differential , Electroencephalography/methods , Humans , Magnetic Resonance Imaging/methods , Neuromuscular Diseases/etiology , Neuromuscular Diseases/therapy , Patient Care Management/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Seizures/etiology , Seizures/therapy , Stroke/etiology , Stroke/therapy , Symptom Assessment/methods
19.
BMJ Case Rep ; 13(6)2020 Jun 14.
Article in English | MEDLINE | ID: covidwho-599775

ABSTRACT

A 41-year-old man with no significant medical history presented with acute behavioural disruption on the background of a 1-day history of severe headache and a 10-day history of dry cough and fever. He was sexually disinhibited with pressured speech and grandiose ideas. His behaviour worsened, necessitating heavy sedation and transfer to intensive care for mechanical ventilation despite no respiratory indication. Investigations confirmed that he was positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Neuroimaging and a lumbar puncture were normal. Initial screening for SARS-CoV-2 in the cerebrospinal fluid was negative although no validated assay was available. The patient's mental state remained abnormal following stepdown from intensive care. Psychiatric assessment found features consistent with acute mania, and he was detained under the Mental Health Act. This case indicates the need to consider COVID-19 in a wider series of clinical presentations and to develop a validated assay for SARS-CoV-2 in the cerebrospinal fluid.


Subject(s)
Affective Symptoms , Betacoronavirus/isolation & purification , Clonazepam/administration & dosage , Coronavirus Infections , Olanzapine/administration & dosage , Pandemics , Pneumonia, Viral , Psychomotor Agitation , Psychotic Disorders/diagnosis , Adult , Affective Symptoms/diagnosis , Affective Symptoms/drug therapy , Affective Symptoms/etiology , Betacoronavirus/pathogenicity , COVID-19 , Cerebrospinal Fluid/virology , Coronavirus Infections/cerebrospinal fluid , Coronavirus Infections/diagnosis , Coronavirus Infections/psychology , Coronavirus Infections/therapy , Diagnosis, Differential , Emergency Medical Services/methods , Headache/etiology , Headache/virology , Humans , Male , Neuroimaging/methods , Pneumonia, Viral/cerebrospinal fluid , Pneumonia, Viral/diagnosis , Pneumonia, Viral/psychology , Pneumonia, Viral/therapy , Psychiatric Status Rating Scales , Psychomotor Agitation/diagnosis , Psychomotor Agitation/drug therapy , Psychomotor Agitation/etiology , Psychotropic Drugs/administration & dosage , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL